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Abstract

Information and data transparency have been shown to have an important impact on compet-
itive behavior and market outcomes. Market transparency can enhance competition by allowing
firms to respond efficiently to a changing market environment. However, a high degree of informa-
tion can facilitate coordination by enhancing communication and the monitoring of rival behavior.
A recent example highlighting concerns over the use of publicly available information to commu-
nicate across firms involves the Alberta wholesale electricity market. This market used to release
anonymized information on firms’ pricing strategies in near real-time. Allegations were raised that
firms were using unique patterns in their prices to reveal their identities to rival firms and coordi-
nate on higher prices. This paper uses machine learning techniques to investigate how firms could
use anonymized publicly available information to communicate with their rivals. These techniques
can be employed as a possible screen to evaluate whether publicly available information can be
used to identify rival behavior and facilitate coordination. Based on these results, regulators can
determine if the degree of market transparency is detrimental to market competition.
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1 Introduction

There is a longstanding debate over the impact of information and transparency on market
competition. It has been shown that information can enhance competition by facilitating con-
sumer search, in settings where production costs are unobservable but positively correlated, and
by allowing firms to quickly respond to the changing market environment.1 Alternatively, it is well
known that information can facilitate coordination and communication across firms by allowing
the monitoring of rival behavior.2

Regulators often publish de-identified data to mitigate the potential concerns associated with
information disclosure. However, sophisticated firms may undertake actions to reveal their identity
by behaving in conspicuous ways. As a result, it is important to evaluate firms’ abilities to identify
rival behavior using publicly available information. Monitoring and detection can be difficult in
market settings where firms interact repeatedly and can use a multitude of possible pathways
to reveal information. This creates the need to develop empirical methods that are flexible and
can leverage the large dimensionality of the data. We study such a case by looking at wholesale
electricity markets and employ machine learning techniques.

In this paper, we use a recent example from Alberta’s restructured wholesale electricity market
where firms compete by submitting bids in the form of price-quantity pairs repeatedly (every hour)
in a centralized market. Like many wholesale electricity markets, Alberta’s market is concentrated
and has been shown to be susceptible to market power execution (Brown, Eckert, and Shaffer 2023).
In this market, firms can adjust their bids up to two hours before the market clears allowing them to
respond quickly to the changing environment. Until a change in regulation in 2017, a de-identified
list of all price-quantity bids used to be released publicly in near real-time, in a report called the
Historical Trading Report (HTR). This provided a high degree of information and transparency.

In August 2013, Alberta’s Market Surveillance Administrator (MSA) issued a report alleging
that firms were using the information revealed in the HTR to coordinate on higher prices (MSA
2013a). The MSA raised concerns that firms were “tagging” their bids on certain days to reveal
their identities to rival firms. It was argued that these bidding patterns allowed firms to coordinate
on high-priced outcomes. These concerns led to a hearing and the eventual end of the publication
of the HTR in an order by the Alberta Utilities Commission (AUC 2017).

Several studies have documented the potential implications of the HTR on market outcomes.
Olmstead, Ayres, and Lomas (2020) and Brown and Eckert (2022) analyze the impact of the
information revealed in the HTR and find that it led to higher market prices. In particular,
Brown and Eckert (2022) present evidence that firms were earning profits in excess of the amount
that would arise from unilateral profit maximization suggesting that firms were using the HTR
to coordinate. Most relevant to our analysis is the work by Brown, Eckert, and Lin (2018). In

1. See Kühn and Vives (1994), Vives (2011), and Holmberg and Wolak (2018) for a detailed discussion.
2. For a detailed discussion in the electricity markets context, see von der Fehr (2013).
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this paper, the authors identify certain bidding patterns used by particular firms and present
evidence that firms would have been able to identify rivals from the information revealed in the
HTR. Further, the authors present evidence that firms were adjusting their bidding behavior when
unique tagging patterns were employed suggesting that firms were responding to the information in
the HTR. However, a limitation of this study was the use of simple statistics and visual inspection to
detect patterns in firms’ bidding behavior. It is likely that firms wishing to reveal their identities
or communicate with rivals could use more sophisticated techniques, that may not be readily
identified by visual inspections. More broadly, it is important to develop algorithmic screens that
do not rely on visual detection and time-consuming monitoring.

Machine learning techniques seem ideal for this purpose. Machine learning approaches are
designed to use large quantities of data to predict outcomes and detect complex patterns that
may not be easily detectable by eyeball/manual inspections. Typically, machine learning models
are trained on large amounts of data and use statistical techniques to identify patterns, trends,
and relationships in the data. These models can then make predictions or decisions based on
patterns they learned in the past. Additionally, machine learning algorithms are designed to adapt
to changing data and to improve their performance (continually) over time. This makes them
particularly useful for applications where the data changes or evolves – such as when agents use
publicly available information to communicate or signal any particular behavior.

In this paper, we employ machine learning techniques to examine the MSA’s claim that patterns
in bidding behavior would have allowed firms to accurately identify the identities of the rivals
associated with anonymized bids in the HTR. In particular, we consider the problem faced by
an individual firm that aims to use the de-identified price-quantity offers in the HTR to predict
the identities of specific rivals. Firms can observe the offers with firm identifications at a 60-day
lag, allowing them to verify and update their prediction algorithm. Hence, our exercise is one of
supervised multinomial classification, in which a period of time ending 60 days before the current
month is the training data sample, and the current month is the test sample. We employ both
decision tree and random forest algorithms. The variables used to predict the identity of the firm
behind a particular price-quantity offer include different functions of the price and quantity (such
as the integer and decimal portions of the price), as well as measures of the position of the price-
quantity offer within the distribution. We employ data on all price-quantity offers from December
2012 to December 2013.

In general, we find that, before the MSA’s report in August 2013, the identities of a firm’s rivals
associated with particular offers could be predicted with an overall average accuracy of 86%. The
most important variables for prediction include variables whose values have economic justification
(such as the MW size of an offer block), but also variables whose economic justification in the
absence of communication is unclear (such as the decimal portion of the offer price). The rules
used by the algorithms reflect patterns that have been previously observed in the data through
visual inspection but also capture other regularities. Importantly, we find that after the 2013 MSA
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report raising concerns over the use of offer patterns, the ability of the algorithms to accurately
identify firms from their offers falls dramatically – with an accuracy rate lower than 50% in some
cases. The reduced accuracy coincides with a distinct change in offer behavior where firms adjusted
their bid strategies that appear to have been much more dispersed and randomized. It is worth
emphasizing that the machine learning algorithm eventually learned how to distinguish the firms
after the policy changes occurred in August 2013 – when firms started to adopt more “randomized”
offer price patterns. This tells us that machine learning can easily and quickly adjust to changing
data environments.

Our findings show that the usage of machine learning algorithms to evaluate if firms can use
publicly available information to identify rivals is promising. Our analysis has important regulatory
policy implications because it demonstrates that machine learning methods may allow firms to
recognize bidding patterns with high accuracy. As a result, our analysis suggests that regulators
should enhance the monitoring of firms’ behavior or reduce the granularity of information provided.

While our analysis focuses on electricity markets, our methods have applications in other set-
tings. Pricing patterns that may be associated with coordination have been documented in a
number of industries. Borenstein (1998) documented communication via fare codes by airlines.
Christie and Schultz (1999) examine the use of odd-eight quotes in Nasdaq stocks. Abrantes-Metz,
Villas-Boas, and Judge (2011) analyze the distribution of the second digit of the Libor rate and
argue that the unique distribution could be associated with rate manipulation or collusion. Lewis
(2015) analyzes price endings in U.S. gasoline markets and finds higher and more rigid prices in
locations that end with 5 and 9 suggesting that these endings may be used to establish focal prices.
Our empirical methodology is particularly well suited for environments where there are numerous
informational channels through which firms may be communicating.

This paper proceeds as follows. Section 2 provides background information on Alberta’s elec-
tricity market and the Historical Trading Report. Section 3 describes our data. The empirical
methodology is summarized in Section 4. Section 5 presents our results. Section 6 concludes.

2 Background

2.1 Alberta’s Wholesale Electricity Market

Alberta’s wholesale electricity market operates as a single hourly uniform-priced procurement
auction. In each hour, firms submit up to seven price-quantity offer blocks for each generation
asset. The prices are restricted to be between $0/MWh and $999.99/MWh and reflect the price
at which the generator is willing to make their specified output available. Throughout the hour,
the Alberta Electric System Operator (AESO) that coordinates the market calls upon supply in
order of the least cost until there is sufficient supply to meet demand. The price of the last unit
called upon sets the System Marginal Price (SMP). Generation units that supply output in the
hour are compensated according to the time-weighted SMP, referred to as the Pool Price.
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Alberta’s wholesale electricity market is an “energy-only” market design. Firms do not receive
supplementary payments for constructing and maintaining generation capacity. Rather, firms
must recover all of their costs of operating (both variable and fixed) by the payments they receive
from producing electricity. Consequently, the MSA has indicated that firms are permitted to
exercise unilateral market power via economic withholding that arises when firms bid units in
excess of marginal cost to ensure they are not called upon (MSA 2011).3 Market power execution
via economic withholding has been well-documented in Alberta’s wholesale market (Brown and
Olmstead 2017; Brown, Eckert, and Shaffer 2023).

In 2013, the sample period of this study, Alberta’s market was moderately concentrated with
five large generators having offer control over approximately 65% of the market’s capacity.4 Tran-
sCanada had the largest offer control at 18.1% followed by ENMAX with 13.4%, TransAlta with
12.8%, Capital Power with 10.4%, and ATCO with 9.8% (MSA 2013b). In 2013, Alberta’s gener-
ation output was primarily supplied by coal and natural gas; coal and natural gas provided 52%
and 38% of the electricity generated, respectively. The remainder was supplied by a mix of hydro,
wind, and biomass (AUC 2021).

2.2 Historical Trading Report

In the wholesale market, firms submit their initial offers the day prior to market clearing. Firms
can make an unlimited number of adjustments to their price-quantity offers up to 2 hours prior to
market clearing. The purpose of this rule is to allow firms to respond to changes in the market
environment (e.g., due to uncertainty in market demand, wind supply, and generator outages).

Until a change in 2017, generators could observe the anonymized prices and quantities for all
offer blocks submitted to the wholesale market via the Historical Trading Report (HTR). The
HTR was released approximately 10 minutes after the end of each hour. Consequently, this gives
firms a window in which they can use the information released in the HTR to adjust their bidding
behavior in future hours. More specifically, given that firms cannot adjust their bids beyond the 2
hours before market clearing and the HTR is published 10 minutes after the hour, firms can adjust
their offer behavior for hour t+3 using the information revealed in the HTR 10 minutes after hour
t.5

Supporters of the HTR argued that the information revealed in near real-time provided gen-
erators with important information about market conditions. However, in August 2013 Alberta’s

3. This differs from many jurisdictions that provide supplementary payments for capacity to recover fixed costs
(Bushnell, Flagg, and Mansur 2017). These market designs are often coupled with regulatory rules that mitigate
generators’ abilities to bid in excess of marginal cost (Graf et al. 2021).

4. As part of industry restructuring in the late 1990s, existing generation capacity owned by three large utilities
were “virtually divested” through long-term contracts giving the contract buyer offer control of these generating
units (the ability to offer the output of these units into the wholesale market). These contracts had all expired by
January 2021. For additional details, see Brown, Eckert, and Shaffer (2023).

5. For a detailed discussion of the market timing and how firms can use the information released in the HTR,
see Brown, Eckert, and Lin (2018).
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Market Surveillance Administrator (MSA) released a report alleging that certain firms were using
the HTR to facilitate coordination. In particular, the MSA suggested that certain firms were "tag-
ging" their price-quantity offers through the use of certain patterns, in order to reveal the identity
of the firm associated with the offers, and to communicate their intent to maintain high prices.
The MSA supported these concerns by documenting a handful of days where unique bid patterns
were employed to effectively create a high-priced shelf of similarly priced offers that were “tagged”.
In subsequent hours, firms would raise their offers up near the shelf resulting in a large quantity
being offered at these high prices which then often set the market-clearing price.

The MSA’s report led to a subsequent hearing by the Alberta Utilities Commission in December
2015 where the MSA recommended the HTR be replaced by a report with less granular information
on individual price-quantity offers. In 2017, the AUC concluded that the HTR has the possibility
to enhance concerns over market power execution and could possibly serve as an avenue for firms
to communicate to coordinate to achieve higher prices (AUC 2017). The publication of the HTR
ended on May 23, 2017.

(a) TransCanada, January 2013 (b) TransCanada, September 2013

Figure 1: Scatter Plots – TransCanada.

The MSA’s 2013 report did not document the patterns that they alleged would allow firms to
reveal their identities and communicate with rivals. Brown, Eckert, and Lin (2018) describe several
different patterns identified via visual inspection in the bidding data. In addition to a tendency for
certain firms to employ specific quantity block sizes (which may simply reflect the sizes of different
generation assets), patterns in offer prices were also identified.6 One pattern that was identified
involved the firm TransCanada. This pattern involved the endings of prices (the digits after the
decimal). On the first day of the month, Transcanada’s non-zero offer prices would end in 0.06,

6. It is important to acknowledge that there could be other reasons why such patterns could be used by traders
(e.g., to identify their own offers in the HTR). However, Brown and Eckert (2022) presents evidence that the tagging
patterns coincided with periods of elevated prices and profits.

6



Price Block Size
7.75 145
7.76 132
10.75 9
10.76 9
740.00 10
741.00 10
974.00 43
975.00 70
976.00 27
977.00 70
978.00 27
979.00 123
980.00 207

Figure 2: Left: Capital Power Offers. Right: March 4, 2013 Offer Curve

or in 0.06 plus a multiple of 0.09. On the second day of the month prices would end in 0.07, plus
multiples of 0.9. The starting price endings would increase to 0.8, 0.9, 0.19, 0.29 and 0.39 over the
fourth to seventh days of the month, before dropping down to 0.06 again on the 8th day.

As an illustration, Figure 1a plots all non-zero price endings for TransCanada, by day, for
January 2013. Brown, Eckert, and Lin (2018) report that 86% of all of TransCanada’s offer
prices over $100/MWh from January 2011 to June 2013 conformed to this pattern. Notably, this
pattern in price endings disappeared following the release of the MSA’s report in August 2013
detailing its concerns. As an example, Figure 1b shows TransCanada price endings for September
2013; following the MSA report, a high degree of randomness is observed in TransCanada’s price
endings.

Different types of patterns have also been identified in the bids of other firms. For example,
Brown, Eckert, and Lin (2018) document the use by Capital Power of a sequence of prices with
price endings of zero, that are separated by exactly $1. This pattern creates a “shelf” in the offer
curve. As an example, the table on the left-hand side of Figure 2 shows all non-zero price-quantities
offers by Capital Power for the hour from 7:00-8:00 AM on March 4, 2013. As illustrated in the
market-level supply curve plotted in the right-hand side of Figure 2, the series of Capital Power
offers with prices ranging from $974 to $980 created a large vertical portion in the supply curve.

The bidding patterns reported in Brown, Eckert, and Lin (2018) were identified through visual
inspection and simple statistics. More complicated bidding patterns are likely to go undetected
using these approaches; as a result, more sophisticated statistical techniques that utilize the large
dimensionality of the data to evaluate how well firms can identify their rivals are desired. More
broadly, this setting provides us with an opportunity to illustrate the potential ability of machine
learning to evaluate if firms were able to identify their rivals’ with a high degree of accuracy.
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3 Data

Our analysis considers the period December 3, 2012 – December 31, 2013, and relies on publicly
available hourly data from the Alberta Electric System Operator’s Merit Order Snapshot dataset.
These data include the observed (final) price and quantity bids for all generation units, the gener-
ation company that had offer control of each unit, import supply from neighboring jurisdictions,
and market demand. It is important to note that these data are released with a 60-day lag and
include the identity (or label) of the firms associated with each asset, information that would not
be available in the HTR released immediately after each hour. In our analysis, we will ask whether
firms can identify the rival firms associated with each price-quantity bid in the merit order data
for a particular hour, by using features of the prices and quantities in the different bids.7 Because
the focus of the MSA’s 2013 report was on the bidding behaviour of three specific large firms
(ATCO, Capital Power, and TransCanada), we label each offer as coming from ATCO, Capital
Power, TransCanada, or ’Other’; we then consider the ability of each of the three firms to correctly
identify the label associated with each rival offer.

Our sample period was chosen for two key reasons. First, our data cover part of the period in
which the MSA alleged that firms were using the information revealed in real-time to communicate
with other generators. Second, prior to December 3, 2012, the AESO’s data does not include the
offer control of every price-quantity block. This limits our ability to evaluate ex-post if the de-
identified data released in the HTR could have been used to correctly identify the firm submitting
the bid.

3.1 Input Variables

The purpose of our empirical exercise is to determine, using machine learning techniques, the
accuracy with which firms could identify the rival firms associated with different price-quantity offer
blocks observed in the HTR. This requires presenting the machine-learning algorithms with the
information contained in the HTR in a sufficiently general way to allow the detection of patterns
that may be present. To do this, we construct variables based on the prices and quantities of
each offer in an hour, and the relationships of those offers to others in the same hour. Table A.1
provides detailed definitions of each of the input variables.

We include basic properties of the price-quantity offers submitted by firms including the quan-
tity offered (q block size), the integer portion of the price (price int), and the decimal portion of
the offer price (price decimal). It is possible that firms may be placing their offers in the “stack”
of other offers to communicate with their rivals. To capture the relationship of an offer to other

7. In addition to reporting the final price and quantity associated with each offer for a particular hour, the
HTR reported the initial price-quantity submission for that offer block for that hour, submitted the previous
day. Unfortunately, these data are not included in the Merit Order Snapshot dataset and are no longer available
historically. It is possible that firms may have been able to send messages through their final offers, but also through
the initial offers, or changes between initial and final offers. Hence, the ability of firms to communicate through the
HTR may have been stronger than our analysis will indicate.

8



nearby offers, we sort all offers in ascending order of price, and construct the difference between
the price, price ending, and quantity of a block, and those of the next lowest and highest blocks
(Dprice up, Dprice down, Dpdec up, Dpdec down, Dquant up and Dquant down). For example, for
the middle offer of the sequence of price-quantity offers (200.10, 45), (230.25, 60), and (240.95,
55), Dprice up = 10.70, Dprice down = 30.25, Dquant down = 15, Dquant up = −5, Dpdec down
= 15, and Dpdec up = −5.

As the portion of the price ending following the decimal is less likely to be driven by economic
considerations, there may be more scope for signaling through price endings. Because of this, we
construct additional variables based on the decimal price ending of an offer. In particular, we sort
the decimal price endings used in each hour, and compute the rank of the price ending from highest
to lowest (rank), the frequency of offers in the hour employing that price ending (dec freq), and
the distance between that price ending and the next lowest price ending (decimal diff ).8 Table
A.2 presents summary statistics of the input variables for each of the firms.

4 Empirical Methodology

Advances in data analytics naturally pave the way for regulators to integrate new (and easy-to-
implement) detection tools and methodologies, such as machine learning, into economic analysis to
improve enforcement and policy (Athey and Imbens 2019). Algorithmic screening may overcome
the drawbacks related to traditional inspection methods, such as eyeball/manual examination,
structural changes, and causal inference analysis. Thus, machine learning is a promising way to
identify communication strategies firms may employ through public data.

The intuition of our classification exercise is as follows. Consider a large firm that observes
the offers of rival firms without identifiers in the HTR. The machine learning algorithm will be
presented with information on an offer, such as its price, quantity, and price ending, and must
classify the offer as coming from one of the firm’s rivals. We use explanatory variables (attributes)
based on firms’ price-quantity offers. The data we use to train the model have labels to identify the
firms attached to these bids. We use decision-tree-based classifier algorithms (Decision Tree and
Random Forest) based on these attributes to predict the identity of the firms (outputs) associated
with a particular price-quantity offer. We then use these algorithms on the de-identified HTR data
to evaluate how well we can correctly label the identities of rival firms.

In Section 4.1, we introduce the supervised machine learning model we use to predict the
identities of the firms and to inspect how firms may have used the available public information
to coordinate their market behavior. Sections 4.2 and 4.3 explain how we train/test and evaluate
the machine-learning algorithms, respectively. Section 4.4 presents the Permutation Importance
(PI) technique we use to assess the relationship between the explanatory variables and the target

8. The machine learning algorithm can handle a large number of additional variables. As a robustness check, the
set of variables was extended to include similar additional statistics based on block size and price integer. These
additional variables led to marginal improvements in the predictions, but the overall qualitative conclusions are
robust.
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variable (the identities of the firms). This step identifies the input variables that are most useful
in predicting the identity of the firms associated with individual offers.

4.1 Decision Tree and Random Forest

A decision tree classifier uses a tree-like structure to classify (label) input data. The general
approach to constructing a decision tree involves recursively partitioning the attributes into regions,
with each region corresponding to a node in the tree. The goal is to create decision rules that
accurately classify new input data instances (James et al. 2013). We illustrate how the decision
tree algorithm classifies the data using the following simplified example with only four attributes:

Attribute 1 < a ?

Yes
Attribute 2 > b ?

No

...

Yes
Attribute 2 < c ?

Yes
Attribute 3 > d ?

No

...

Yes
Attribute 3 < e ?

No

...

Yes
Attribute 4 > f ?

No

...

Yes
classify instance as firm i

No

No

...

The decision rules are guided by nodes and branches. Each node represents a decision based
on an attribute of the data, and each branch represents the outcome of that decision. Therefore,
nodes play a crucial role in the classification process by allowing the model to make decisions about
how to classify the input data based on the information contained in each attribute. At the top of
the tree, we have the root node, i.e., the first decision made. The decision tree algorithm calculates
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the "impurity"9 of the tree nodes to select the best attribute to split the data and separate the
classes. Essentially, this procedure seeks to find the input variable (attribute) that results in the
most "homogeneous" child nodes, where each child node contains mostly one class. By doing so,
it can create a tree that effectively separates the classes in the data. From the root node, the tree
branches out into multiple paths. These paths represent distinct possible outcomes of the decision.
Each subsequent node tests different attributes of the data, and the tree continues to branch out
until a final decision is reached at the bottom of the tree. This final decision is called a leaf node
and represents the classification or prediction made by the model.

Random forest is an ensemble learning method largely used for classification problems in ma-
chine learning. It combines the outputs of multiple decision trees to improve the accuracy of the
classification model. The basic idea is to build a large number of decision trees, each on a randomly
sampled subset of the training data and using a random subset of the attributes. Each decision tree
is trained independently, and its prediction is combined with those of the other trees in a majority
vote.10 Random forests have a greater ability than decision trees to learn the actual structure of
the data. Unlike decision trees, random forests are less likely to overfit the data, as they use only
a portion of it and a subset of the original input variables. This allows them to learn only the
essential aspects of the data. Another advantage of random forest algorithms is their robustness
to noise and outliers in the data (Hastie, Tibshirani, and Friedman 2009; Breiman 2017).

4.2 Training and Test Samples

When training a machine learning model, it is common to use more data for training than for
testing, as we are ultimately interested in how well our model can generalize to new – and unseen –
data. The data used for testing serves as a proxy for this new data. While there is no fixed rule for
how much data to use for training and testing, a common industry practice is to use a split of 75%
for training and 25% for testing, or 70% for training and 30% for testing. Ultimately, the split choice
should depend on the specific application and the available data (Hastie, Tibshirani, and Friedman
2009; James et al. 2013). In our application, we use a three-month training sample for each one-
month test sample. Our training set contains approximately 75% of the total observations, and our
test set computes out-of-sample predictions of approximately 25% of the sample. The classification
task is carried out on a rolling window scheme because the dataset with the identity (or label)
of the firms is released with a 60-day lag.11 In other words, to predict the identity of firms in
May 2013 (test sample), we used data for December 2012, January 2013, and February 2013 as
the training sample. We apply this same procedure to predict the identity of firms in subsequent
months (June 2013 to December 2013).

9. Impurity is a measure of how mixed the classes are at a given node. Two common ones are Gini impurity and
entropy. See James et al. (2013) for details.

10. In majority voting, we first group the outputs (i.e., the labels predicted) by the individual trees. Then, the
most frequent output is voted as the final predicted label.

11. In machine learning classification tasks, a labeled dataset refers to a set of input examples or data instances
having an associated label (or class) representing the true output or target for that input.
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It is worth mentioning that while we use the identity of the firms to train our supervised
machine learning algorithm based on the AESO’s Merit Order data, we remove their identities
in the test set to evaluate the predictive performance. Consequently, the (test) data used in our
analysis provide the de-identified final bids that would have been published immediately after the
hour. These data provide us with a rich set of data that can be used to evaluate if firms were able
to identify their rivals using this information with a high degree of accuracy. We use the cross-
validation approach to compare and select the best machine-learning model based on its ability to
predict new data.12

4.3 Evaluation Metrics

As we propose a classification task using a labeled dataset, we evaluate our findings by compar-
ing our out-of-sample predictions with the firms’ actual identities by assessing the Precision and
f1-score metrics. Precision quantifies the number of correct predictions. More precisely, Precision
is the fraction of times that the algorithm is correct when it labels an offer as coming from a specific
firm. Thus, high Precision is associated with a low incidence of Type I errors (false positive). As
an example, a false positive in our analysis would reflect a situation where ATCO does label a firm
as being “TransCanada” when it is not “TransCanada”.

To understand the f1-score, we first must introduce the Recall metric. A high Recall is asso-
ciated with a low incidence of Type II errors (false negative). For example, a false negative in
our analysis would reflect a situation where ATCO does not label a firm as being “TransCanada”
when it is “TransCanada”. This reasoning is analogous to predictions related to “Capital Power”
and “Others”. To achieve maximal Precision (no false positives) and Recall (no false negatives)
there needs to be an absence of type I and II errors, respectively. The f1-score provides a single
score that balances (via the harmonic mean) the concerns of both Precision and Recall in the same
measure.13

To analyze further the model’s predictive power and how that power changed following the
release of the MSA’s 2013 report in August, we consider Receiver Operating Characteristics (ROC)
and Area Under the Curve (AUC) metrics (Bradley 1997). ROC is a widely used performance
metric in machine learning classification tasks, and measures the ability of a classifier to distinguish
between positive and negative classes by plotting the True Positive Rate (TPR) against the False
Positive Rate (FPR). The ROC curve relies on a probabilistic model that outputs the probability
of an observation belonging to the positive class – popularly named as “class 1”, which is the class
we want to predict. So, the model outputs probability values (between 0 and 1). Thus, to build
the ROC curve, we use these model outputs and establish a threshold, i.e., the point at which a
classifier outputs positive (class 1) or negative (class 0) predictions. The most common value for

12. Cross-validation may flag overfitting. Intuitively, overfitting describe the case in which the model performs
well for the training dataset but generates poor predictions for new data.

13. f1-score = 2× Precision×Recall
Precision+Recall .
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the threshold is 0.5, but to plot the ROC curve, we use the interval [0,1]. Therefore, to draw the
ROC curve, we run the classification model on a test set of labeled data and use the predicted
class probabilities to generate a set of predictions for different probability thresholds.

In our analysis, positive classes represent the label of the specific firm we aim to identify.
For example, if ATCO wants to predict TransCanada, then TransCanada represents the positive
class – and Capital Power and Others the negative class. While TPR measures the classifier’s
ability to identify TransCanada correctly, FPR measures the classifier’s tendency to misclassify
TransCanada.14 We can plot different points on the ROC curve by varying the threshold for
classifying instances as positive or negative. The closer the curve is to the top-left corner of the
plot, the better the classifier is at distinguishing between the two classes. The area under the ROC
curve (AUC) measures the classifier’s performance. An AUC of 1 indicates a perfect classifier
and an AUC of 0.5 points to a random classifier. In summary, the ROC measure provides an
intuitive way to evaluate the trade-off between TPR and FPR. This helps us to assess the overall
performance of our classification model.

4.4 Permutation Importance (PI)

We employ Permutation Importance (PI) to determine which variables are most important for
predicting the identities of rival firms. Permutation Importance is a technique used in machine
learning that helps to identify the variables that contribute the most to the predictive power of
a model (Altmann et al. 2010). The idea behind the technique is relatively simple: by randomly
permuting (i.e., shuffling) the values of a given variable in the dataset and observing how much the
model’s performance decreases, we can estimate the importance of that variable. Intuitively, PI
measures the decrease in a model accuracy score when a single feature value is randomly shuffled,
and can be summarized as follows: (i) train a model on a dataset including all input variables
to calculate its performance on the test sample; (ii) randomly shuffle the values of a single input
variable in the test sample while all other variables remain unchanged to calculate the model’s
performance again on the shuffled dataset; (iii) compare the original performance metric to the
shuffled performance metric to observe how much the model’s performance decreased; and (iv)
rank the variables by the decrease in the model’s performance. More important variables will lead
to larger decreases.

Suppose we have a variable with a PI of 0.15. In practical terms, this variable leads to a
0.15 decrease in the model accuracy score when replaced by its shuffled version. We can also
interpret the PI score in relation to other attributes within the same model – and use it as a tool
for variable selection or understanding the relative importance of different input variables in the
model’s predictions. Thus, following these steps for each input variable, PI allows us to identify

14. Typically, ROC curves apply to binary classification tasks, where the True Positive and False Positive rates
are unambiguous. In the case of our multiclass classification, we must binarize the outputs to provide a notion of
both True Positive and False Positive. To reach that aim, we use the One-vs-Rest scheme to compare each class
(“TransCanada” for instance) against all the others ( “Capital Power” and “Others” assumed as one).
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which input variables are the most important in making accurate predictions.

5 Results

In this section, we present the results from the usage of the decision-tree-based algorithms to
predict the identities of rival firms associated with particular price-quantity offers. In Section 5.1,
we explore the results from the perspective of ATCO. Specifically, we consider to what extent ATCO
could be using the most recent three months of training data for which identifying information
is available to correctly classify rival offer blocks as Capital Power, TransCanada, or Other. We
categorize in the label “Other” all the remaining firms in the data set. Section 5.2 provides an
overview of the results from the perspective of Capital Power and TransCanada.

5.1 ATCO

To better understand and evaluate the random forest classifier’s performance, we first use the
illustration of Figure 3 to assess the average precision and f1-score – from May 2013 to December
2013 – for each individual class. ATCO can identify Capital Power with an overall average Precision
of 0.78 and 0.64 f1-score and recognizes TransCanada with an average Precision of 0.74 and 0.67
f1-score. It is worth noting, however, that these scores are distinctly higher between May 2013
and July 2013, especially for TransCanada, where we find an average Precision and f1-score given
by 0.88 and 0.81, respectively. We observed a noticeable fall in the score metrics between August
2013 and October 2013, which led to a decrease in the average performance – after this period, it
started to increase again between November 2013 and December 2013.

(a) (b)

Figure 3: (a) Precision and (b) f1-score – ATCO.

Figures 3a and 3b show that following the MSA’s August 2013 report alleging that firms were
tagging offers, the ability of ATCO to identify the offers of TransCanada declined sharply, with
precision and f1 scores falling from above 0.8 in July to below 0.5 and 0.4 in September. This result
suggests that the dramatic change in TransCanada’s price ending pattern in August may have had
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an important negative effect on the ability of rival firms to recognize TransCanada offers. Notably,
however, we see an increase in this ability by November, once TransCanada’s new price-ending
behavior has started appearing in the training data. Hence, our results suggest that even with the
switch to random and noisy price endings, TransCanada’s offers can be identified.

(a) (b)

Figure 4: ROC curves – ATCO.

Figure 4 illustrates the rates of correct predictions (on the vertical axis) versus the fraction of
errors on the horizontal axis. In the best scenario, the rates of correct predictions and errors would
be null, respectively. Then, a perfect prediction would occupy the coordinate (0,1) in the upper-left
corner of the graph. Furthermore, the ROC curve captures the true and false positive rates for
different classification threshold probabilities. Poor quality predictions form a diagonal (dashed
in black) line from coordinate (0,0) to coordinate (1,1). Along this dashed line, the algorithms
predict all firms as Capital Power or TransCanada. Predictions lying below this dashed line have
little or no ability to distinguish Capital Power from TransCanada.

From Figures 4a and 4b, we can see, in relative terms, a decrease in the ability of the random
forest algorithm to identify Capital Power and TransCanada in the period ranging from June
2013 to September 2013. Generally, an AUC score of 0.8 indicates that the model has a high
level of discriminatory power and is able to distinguish between positive and negative instances
with reasonable accuracy (Hosmer Jr, Lemeshow, and Sturdivant 2013). Thus, the AUC value we
achieve (0.82) still points to a good performance of the model and may give us some clues about
the broader concerns of having a large set of information revealed in near real-time to get the
following conclusion: as long as there are enough randomized-looking patterns, a machine learning
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algorithm could learn these patterns to predict identities relatively well in our setting.
Recall that, until August 2013, firms were signaling via price decimals, mainly TransCanada

and Capital Power – and their pattern were duly captured by the attributes of the model, in
particular the "dec freq" input variable, as shown in Panel (A) of Table 1. Even when firms
stopped signaling via the (frequency of) price decimals, it was still possible to reach a satisfactory
level for AUC in September 2013. Therefore, the main takeaway is that – at a relatively moderate
cost in terms of forecasting error – our model manages to predict the identity of companies even
when they do not send signals to rivals with well-defined (and frequent) price decimals patterns.

Table 1 presents the results of the PI technique when applied to ATCO’s classification exercise
using the random forest algorithm. In the first column of each panel, we show the estimated increase
in prediction error when we replace each input variable with its random shuffling counterpart. The
drop in the model accuracy captures how much the identification of the firms depends on each
input variable. In Panel (A), q block size has a Permutation Importance of 0.118. This tells us that
the drop in the model accuracy when we replace q block size by its random shuffling counterpart is
given by 0.118. In addition, we see that the “top-four” input variables to predict TransCanada and
Capital Power identities (from May 2013 until July 2013) are q block size, price int, price decimal,
and dec freq. This is not observed in Panel (B), where the input variable dec freq is the less relevant
variable. In fact, this suggests that, from August 2013 until December 2013, dec freq decreases the
ability of ATCO to predict TransCanada and Capital Power identities. We find similar outcomes
in the cases where we evaluate Capital Power’s and TransCanada’s ability to predict their rivals’
identities (see Tables B.1 and B.2, respectively).

Panel (A) Average (May 2013 -Jul 2013) Panel (B) Average (Aug 2013 -Dec 2013)
Permutation Importance Std. Dev. Permutation Importance Std. Dev.

q block size 0.118 0.001 price int 0.119 0.002
price int 0.106 0.002 q block size 0.095 0.002
price decimal 0.071 0.001 price decimal 0.060 0.002
dec freq 0.035 0.001 Dprice down 0.010 0.001
Dprice up 0.021 0.001 Dprice up 0.010 0.001
Dprice down 0.011 0.001 rank 0.003 0.001
rank 0.009 0.001 Dquant down 0.003 0.001
Dquant down 0.008 0.001 Dpdec down 0.003 0.001
Dpdec up 0.007 0.001 Dquant up 0.003 0.001
Dpdec down 0.006 0.001 Dpdec up 0.002 0.001
decimal diff 0.003 0.001 decimal diff -0.001 0.0004
Dquant up 0.002 0.001 dec freq -0.002 0.001

Table 1: Permutation Importance – ATCO.
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5.1.1 Paths and Thresholds to Identify TransCanada

Let us focus now on how the decision tree model estimates different regions to predict which
blocks are TransCanada.15 In this illustration, we are taking the decision rule developed on the
training sample and applying it to the test sample (May 2013). For reference, there are a total of
51,349 blocks. Of these, 63% are Other, 15% are Capital Power, and 22% are TransCanada.

The first cut separates blocks based on whether the block size is less than 66.5 or greater than
66.5. There are 46,249 blocks with a size less than 66.5, and 5,100 blocks with a size greater
than 66.5. TransCanada represents 25% of the blocks with a size less than 66.5, but only 1% of
blocks greater than 66.5. Hence, as our focus here is to describe the path allowing us to predict
TransCanada, we must follow the left side of the tree. Note that the right side of the tree would
be interesting to follow the path that allows us to identify Capital Power – since the percentage
of blocks larger than 66.5 provided by Capital Power increases to 35%.16

Within the set of blocks smaller than 66.5, the algorithm’s next cut is to divide blocks according
to whether the price ending (price decimal) is less than or greater than 5.5 (note that a price of
20.05 has a price decimal ending of 5, for example). Of the 11,925 blocks in this subset that have
a price ending less than 5.5, only 1% are TransCanada. In contrast, 33% of the 34,324 blocks in
this subset that have a price ending greater than 5.5 are TransCanada.

q block size < 66.5

price decimal < 5.5 price decimal > 5.5

price decimal < 84.5

dec freq < 1.5 dec freq > 1.5

price int < 10.5 price int > 10.5

price decimal < 48.5 price decimal > 48.5

price decimal > 84.5

q block size > 66.5

15. It is important to emphasize that the results of the decision tree classifier presented here have a didactic
purpose since its decision rule may be more easily interpreted. We also summarize the results for this particular
decision tree in Appendix B.2.

16. It is worth mentioning that although most instances labeled as TransCanada are in the leaves on the left
branches of the tree, the right branches can also contain leaves associated with the TransCanada pattern. Likewise,
although the right side of the tree would make it possible to map Capital Power, the tree’s left side may also allow
us to identify it correctly.
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Essentially, the algorithm has decided that to find TransCanada blocks, it should focus on
blocks smaller than 66.5 and have price endings greater than 5.5. The latter is interesting since we
know from our previous (eyeball) examination of price endings that TransCanada’s price endings
are almost always 6 and higher.

Along this path, the next step is to separate the blocks with price endings less than 84.5 from
those with endings greater than 84.5. Again, this fits neatly with our pattern; in May 2013, greater
than 99% of all of TransCanada’s blocks had price endings of 84 or smaller, and 84 fits within
TC’s pattern. Of the blocks along this path that have price endings greater than 84.5, only 1%
are TransCanada, so we will not follow that path further in this discussion.

Focusing on blocks that have less than 66.5 MW, and price endings from 6 to 84, the algorithm
then looks at dec freq, which is the percentage of blocks in the hour that share the same price
ending as the block in question. Note that within the entire sample, the only price ending that
has large frequencies is 0. Looking at blocks less than 66.5 MW and with price endings from 6
to 85, dec freq ranges from 1 to 14 with a mean of 3.5. The algorithm divides the blocks in our
current subset according to whether dec freq is less than or greater than 1.5. Of the 5,992 blocks
in the subset that have dec freq<1.5, only 5% are TransCanada; in contrast, of the 22,653 blocks
in the subset with dec freq>1.5, 49% are TransCanada. This seems to capture that on a given day,
TransCanada uses a small number of price endings, so that the same ending is used on multiple
blocks.

The tree we present here shows a couple of more steps. It separates the subsample by price
integer (threshold 10.5) and price ending again (threshold 48.5). The latter is interesting since
it captures a breakpoint in TransCanada’s price-ending pattern – in that it uses endings in the
ranges [42-48] and [51-57], but the pattern never lands on price endings of 49 or 50. This sort of
threshold shows up in other decision rules as well. Likewise, there are paths that identify blocks
as TransCanada if they have price endings between 82.5 and 84.5.

5.2 Capital Power and TransCanada

Qualitatively, as illustrated by Figure B.1 in Appendix B, the results obtained for Capital
Power and TransCanada are similar to those found for ATCO. In general, we observe that the
forecasts made between May and July 2013 have substantially higher Precision and f1-score rates.
There is a significant drop in the ability of firms to predict the identity of rivals between August
and October 2013.

Figure B.2 illustrate the AUC for Capital Power and TransCanada. As observed for ATCO, we
notice a decrease in the AUC metrics when we compare June 2013 with September 2013. However,
their values still point to a good performance of the model. This provides additional evidence that
machine learning algorithms could learn patterns to predict identities relatively well, even after
the policy change observed in August 2013.

Table B.1 summarizes the permutation importance outcome for Capital Power. In Panel (A),
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we see that the top-four input variables to predict TransCanada and ATCO identities (from May
2013 until July 2013) are price int, q block size, price decimal, and dec freq. In Panel (B) we
observe the following top-four input variables: price int, q block size, Dprice up, Dprice down –
and dec freq is the less relevant variable between August 2013 and December 2013. B.2 shows the
outcomes of the permutation importance technique for TransCanada. The top-four variables in
Panel (A) are price int, q block size, price decimal, and Dprice up. On the other hand, the top-four
variables to identify Capital Power and ATCO are price int, q block size, Dprice up, and price
decimal. Finally, it is worth noticing that when TransCanada wants to identify ATCO and Capital
Power between August 2013 and December 2013, the inclusion of the variable dec freq does not
necessarily decrease its accuracy. This outcome presented in Panel (B) is different (opposite) from
when ATCO (Capital Power) is trying to predict Capital Power (ATCO) and TransCanada offer
prices.

6 Conclusion

In this paper, we illustrate the potential benefits of machine learning tools to competition policy
enforcement, by applying them to a case of possible coordinated behavior in Alberta’s wholesale
electricity market. In particular, in 2013 the Alberta Market Surveillance Administrator alleged
that firms were employing patterns in their bids into the market, allowing rivals to identify them in
anonymized public data and potentially sending signals about bidding intentions. While previous
studies of this case have used visual data inspection and simple summary statistics to search for
bidding patterns, we employ a more rigorous approach, by using machine learning algorithms to
examine whether firms could identify their rivals’ offers in public data. In addition, we consider
which features and characteristics of price-quantity offers are most important in revealing firms’
identities.

We find, using random forest algorithms, that before the release of the MSA’s report, the
ability of firms to identify large rivals through public bidding data was high, but this ability
declined when firms adjusted their bidding behavior after the report was released. We find that
the bid characteristics that contribute most to identifying the firms associated with particular bids
include features that likely have physical or simple economic justification (such as the quantity
of the offer or the integer portion of the price), but also characteristics such as the decimal price
ending and the frequency of price endings whose justification is less obvious in the absence of
signaling and communication. Therefore, our results suggest that the recognizability of firms in
public offers is at least partly the result of deliberate behavior.

Our analysis highlights the potential use of machine-learning techniques to evaluate if firms can
use de-identified data to identify rival behavior. Our analysis has important regulatory applications
in settings where firms interact repeatedly and have access to high-frequency publicly available
data. In this setting, regulators should enhance monitoring of firm behavior or potentially reduce
the amount and granularity of publicly available information.
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Our paper suggests several directions for future research. First, our analysis considers the case
of Alberta’s wholesale electricity market. Future research should consider alternative jurisdictions
and industries to demonstrate the potential applicability of machine learning techniques in inform-
ing regulators about the appropriate level of information disclosure. Second, our random forest
approach is well suited to determining whether firms were revealing their identities in public data
as alleged, but less well suited to identifying the price patterns used for this purpose. The develop-
ment of machine learning tools that monitoring or antitrust agencies could use to find suspicious
patterns in pricing and bidding data is an important avenue for further research. A potentially
fruitful approach may incorporate data mining algorithms used for pattern recognition; see for
example Mooney and Roddick (2013) and Fournier-Viger et al. (2017) for recent surveys. Third,
our analysis relies on standard decision trees and random forest algorithms. Future research could
apply and compare different ML techniques, such as Gradient Boosting classifiers, which are en-
semble methods that combine multiple weak learners (usually decision trees) to make accurate
and robust predictions. Another possibility would be to use deep learning models such as Convo-
lutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), which have achieved
excellent performance in multiclass classification tasks, and can learn more complex patterns and
relationships from the data.
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Appendix A Input Variables and Summary Statistics

Input Variable Definition

q block size the quantity offered in a particular price-quantity offer
price int integer portion of the offer price
price decimal decimal portion of the offer price
dec freq frequency with which a particular price decimal is used
rank rank of the decimal ending from highest to lowest
decimal diff distance of a price decimal to the next lowest distinct price decimal
Dpdec up price decimal minus price decimal of the next highest price-quantity offer
Dpdec down price decimal minus price decimal of the next lowest price-quantity offer
Dprice up price integer minus price integer of the next highest price
Dprice down price integer minus price integer of the next lowest price
Dquant up quantity minus quantity of the next highest price-quantity offer
Dquant down quantity minus quantity of the next lowest price-quantity offer

Table A.1: Variables used to recognize patterns firms may have used to tag themselves

Obs Mean Std. Dev. Min Max Obs Mean Std. Dev. Min Max

Panel (A) ATCO Panel (B) Capital Power

price int 99,277 271.83 353.69 17 999 price int 116,465 382.33 412.25 6 999
price decimal 99,277 37.23 35.20 0 99 price decimal 116,465 35.11 33.88 0 99
dec freq 99,277 7.68 9.37 1 46 dec freq 116,465 7.63 9.53 1 46
rank 99,277 17.76 16.00 1 66 rank 116,465 17.40 16.00 1 68
decimal diff 99,277 1.63 1.88 0 25 decimal diff 116,465 1.37 1.65 0 28
Dpdec up 99,277 -3.72 46.07 -99 99 Dpdec up 116,465 1.76 34.46 -99 99
Dpdec down 99,277 1.39 43.79 -99 99 Dpdec down 116,465 -1.89 34.94 -99 99
Dprice up 99,277 7.94 30.26 0 666.27 Dprice up 116,465 10.47 31.34 0 718
Dprice down 99,277 11.91 43.86 0 643.17 Dprice down 116,465 16.04 48.30 0 718
q block size 99,277 29.77 17.58 1 140 q block size 116,465 44.81 35.16 1 266
Dquant up 99,277 -2.73 23.06 -135 324 Dquant up 116,465 -0.14 35.43 -222 327
Dquant down 99,277 0.54 23.25 -331 119 Dquant down 116,465 -2.39 36.78 -307 231

Panel (C) Others Panel (D) TransCanada

price int 518,144 258.59 375.08 0 999 price int 138,340 252.43 368.72 2 999
price decimal 518,144 46.36 36.92 0 99 price decimal 138,340 37.69 23.52 0 99
dec freq 518,144 6.49 8.57 1 46 dec freq 138,340 3.32 3.37 1 43
rank 518,144 21.96 16.92 1 68 rank 138,340 18.28 10.93 1 61
decimal diff 518,144 1.67 1.78 0 28 decimal diff 138,340 2.62 2.12 0 18
Dpdec up 518,144 0.53 40.28 -99 99 Dpdec up 138,340 2.02 33.10 -99 99
Dpdec down 518,144 0.76 40.75 -99 99 Dpdec down 138,340 0.81 33.67 -99 97
Dprice up 518,144 12.53 39.30 0 703 Dprice up 138,340 6.35 22.76 0 675
Dprice down 518,144 10.13 31.01 0 646.35 Dprice down 138,340 7.89 29.01 0 651
q block size 518,144 33.43 34.03 1 350 q block size 138,340 39.13 18.79 1 177
Dquant up 518,144 1.01 42.96 -348 348 Dquant up 138,340 -6.29 25.19 -149 310
Dquant down 518,144 -1.61 39.15 -348 348 Dquant down 138,340 3.25 34.64 -333 168

Table A.2: Summary statistics of the input variables. December 3, 2012 – December 31, 2013.
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Appendix B Supplemental Results

Subsection B.1 Random Forest

(a) (b)

(c) (d)

Figure B.1: Precision and f1-score: Capital Power and TransCanada
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(a) (b)

(c) (d)

Figure B.2: ROC curves – Capital Power and TransCanada.

Panel (A) Average (May 2013 -Jul 2013) Panel (B) Average (Aug 2013 -Dec 2013)
Permutation Importance Std. Dev. Permutation Importance Std. Dev.

price int 0.155 0.003 price int 0.165 0.003
q block size 0.090 0.002 q block size 0.096 0.002
price decimal 0.043 0.001 Dprice up 0.030 0.001
dec freq 0.028 0.001 Dprice down 0.022 0.001
Dprice down 0.028 0.002 price decimal 0.021 0.001
Dprice up 0.028 0.002 rank 0.005 0.001
rank 0.006 0.001 Dquant down 0.002 0.001
Dpdec up 0.005 0.001 Dpdec down 0.002 0.001
Dpdec down 0.005 0.001 Dpdec up 0.002 0.001
Dquant down 0.002 0.001 Dquant up 0.002 0.001
decimal diff 0.001 0.001 decimal diff -0.001 0.001
Dquant up -0.0004 0.001 dec freq -0.004 0.001

Table B.1: Permutation Importance – Capital Power.
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Panel (A) Average (May 2013 -Jul 2013) Panel (B) Average (Aug 2013 -Dec 2013)
Permutation Importance Std. Dev. Permutation Importance Std. Dev.

price int 0.221 0.003 price int 0.190 0.003
q block size 0.100 0.002 q block size 0.067 0.002
price decimal 0.034 0.001 price decimal 0.038 0.001
Dprice up 0.029 0.001 Dprice up 0.033 0.001
Dprice down 0.027 0.002 Dprice down 0.025 0.001
Dquant down 0.007 0.001 Dquant down 0.002 0.001
Dquant up 0.004 0.001 Dpdec up 0.002 0.001
dec freq 0.004 0.001 Dpdec down 0.001 0.001
rank 0.004 0.001 Dquant up 0.001 0.001
Dpdec up 0.003 0.001 dec freq 0.0004 0.001
decimal diff 0.003 0.001 decimal diff 0.0001 0.001
Dpdec down 0.002 0.001 rank -0.002 0.001

Table B.2: Permutation Importance – TransCanada.

Subsection B.2 Decision Tree

(a) (b)

(c) (d)

(e) (f)

Figure B.3: Precision and f1-score.
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(a) (b)

(c) (d)

(e) (f)

Figure B.4: ROC curves
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Permutation Importance Std. Dev.

q block size 0.196 0.003
price decimal 0.158 0.003
price int 0.132 0.003
dec freq 0.047 0.001
Dprice down 0.027 0.001
Dpdec down 0.026 0.001
Dprice up 0.021 0.001
Dquant down 0.020 0.001
Dquant up 0.013 0.001
Dpdec up 0.011 0.001
rank 0.004 0.001
decimal diff -0.001 0.001

Table B.3: Permutation Importance – ATCO (May 2013) using the Decision Tree classifier
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